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Directed Acyclic Graphs (DAGs) 

We now turn our attention to a very interesting and important class of graphs called 

Directed Acyclic Graphs or DAGs. 

(Refer Slide Time: 00:08) 

So, to motivate this class of graphs, let us look at a problem where we have a bunch of 

task to perform with some constraints. Suppose, we are going on a foreign trip, then of 

course, we need a passport, we need to buy a ticket, we require a visa probably, we want 

to buy some travel insurance, we probably need some foreign exchange as well and 

perhaps you want to buy some gifts for our hosts. 
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(Refer Slide Time: 00:36) 

 

Now, these tasks are dependent on each other in certain ways, without a passport you 

cannot buy a ticket, not even buy any travel insurance. For the visa, you need both the 

ticket and the insurance to be available and without a visa, the bank will not give you 

foreign exchange. And finally, you would not like to buy gifts for your hosts, unless the 

trip is confirmed. So, unless you have all these things including the visa in hand, you do 

not want to invest in the gift. 

(Refer Slide Time: 01:06) 

 

So, our goal is that given these constraints in what sequence should we perform these six 

operations, getting a passport, buying a ticket, getting insurance, getting a visa, buying 

foreign exchange and buying gifts for our hosts. What sequence should we do it, so that 
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whenever we want to approach a task, the constraints that are required for the task are 

satisfied. 

(Refer Slide Time: 01:31) 

 

So, as you would expect we will model this using a graph. In this graph, the vertices will 

be the tasks and then you will have an edge pointing from T 1 to T 2, if T 1 must come 

before T 2, in other words T 2 depends on T 1 you cannot do T 2 unless T 1 has been 

completed. So, as an example getting a passport must come before buying a ticket, so T 1 

is getting a passport, T 2 could be getting a ticket. Similarly, you must buy a, have a visa 

before you buy a foreign exchange. So, there will be an edge from getting a visa to buy a 

foreign exchange. 

(Refer Slide Time: 02:13) 
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So, if we look at the constraints that we wrote this is the graph that we had, so we had a 

constraints with sets we need a passport to buy a ticket, we need a passport to buy 

insurance, we need both a ticket and insurance to get a visa. So, there are two constraints 

pointing to visa. Then, you need a visa to buy a foreign exchange and finally, you said 

we will buy a gift only if the trip is confirmed and at some point at this stage when all 

these operations are done, we can assume that the trip is confirmed, because nothing is 

blocking as getting on the plane. 

So, this is a graph that we have and now our goal is to sequence these six operations, in 

such a way that whenever we want to perform a task, whatever it depends on has already 

been done. So, we can see that you need a passport to do anything, so we always need to 

start with getting a password. Now, there is no dependency between buying a ticket and 

buying insurance as per become constraints we have, so far. So, after password you can 

either buy a ticket first and then buy insurance or you can buy insurance first and then 

buy a ticket. 

So, there is a different ordering possible which does not violate the constraints, on the 

other hand for a visa we need both. So, visa must come after both ticket and insurance, 

but again having done the visa, then there is no constraint between buying the foreign 

exchange and buying gifts. So, you could do the foreign exchange before the gift or the 

gift before the foreign exchange, so there are in this particular example there are two 

possible ways of reordering ticket and the insurance and there are two possible ways of 

reordering the gifts and the foreign exchange. So, overall there are four different 

sequences which are compatible with these constraints. 
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(Refer Slide Time: 03:51) 

 

So, this class of graph is an important class and it has two important features, one is of 

course, it is directed. Because, these dependencies are from one task to another task, it is 

not a symmetric dependency and there are no cycles. See, if you had a cycle it would 

been that group of tasks depend on each other, so there is no way to start, because each 

task is depends on something else in the cycle. So, you have to break the cycle 

somewhere in order to get started, but you cannot break it anywhere, because each task 

depends on something else in the cycle. So, this graph will have directions on the edges 

and they cannot be any cycles in this graph. 

(Refer Slide Time: 04:28) 

 

So, we call such a graph a directed acyclic graph, so a directed acyclic graph is just a 
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directed graph, in which there is no directed path from any vertex back to itself. So, if I 

started any vertex V, it should not be the case that I can follow a sequence of directed 

edges in the same direction and somehow come back to d. So, this should not be there, so 

it should not be this cycle, we abbreviate the name Directed Acyclic Graph as DAG.. So, 

very often simplicity we will call this graph as DAGs. 

(Refer Slide Time: 05:02) 

 

So, the problem that we had discussed in our example is that we have given a set of tasks 

and we want to write them out in a sequence with respect to the constraints, the 

constraints are nothing but, the edges. So, in general we are given a set of vertices these 

are our tasks abstractly 1 to n and we want to read, write our 1 to n in such a way that the 

constraints are respected. What this means is, that we will write out a sequence of 

numbers which is a permutation of 1 to n. In such a way that whenever there is a 

constraint of the form j k that is represents edge j k, then in the numeration that we have 

perform j must come before k. So, it cannot be that we have to do j before k according to 

our constraint, but in the sequence that we produced k happens before j. So, the order of 

vertices in the final sequence must respect the constraints given by DAG, so for various 

reasons this is known as topologically sorting the DAG. 
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(Refer Slide Time: 06:02) 

 

So, the first observation is that if the directed graph had a cycle, then you will not be able 

to topologically order it. Because, if it had a cycle then for instance supposing j and k are 

vertices on the cycle, then you will have a path from j to k and a path from k to j. Now, it 

is easy to see that the topological ordering constraint extend to paths that is if I have j 

before k as an edge, I know that j must appear before k in the final sequence, also it has 

the path from j to k, then there is a sequence of dependencies from j to k. So, j must 

appear before k. 

Now, if I have a cycle it says that j must come before k and k must come before j. So, 

there is no way to break this ((Refer Time: 06:45)), so we will end up with this situation 

where we cannot order this set of task to respect the constraints. So, the graph has cycles, 

then it is clear that there is no topological ordering possible. 
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(Refer Slide Time: 06:58) 

  

So, what we claim; however, is that for DAGs there is no cycle, the graph is actually 

acyclic then we can always order it topologically. So, this strategy is to order the vertices 

as follows, you first list all the vertices which have no dependencies. In our earlier 

example, the vertex which has no dependencies was getting passport, we did not need to 

do anything before getting a passport, so we can do that first. 

Now, once we are nop-top that the dependency you see any vertex which all it is 

dependencies that now satisfied and then we can numerate that. So, we can 

systematically list out vertices with no incoming edges, then vertices all whose incoming 

edges are already been accounted for a numeration and so on. 

(Refer Slide Time: 07:45) 
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So, to formalize this notion we introduce some terminology, so recall that for an 

undirected graph, we use the term degree of v to refer to the number of vertices 

connected to v. So, v was connected by an edge before vertices, then we would said that 

the degree of v is 4. Now, since we have a directed graph we have a directions on the 

edges, we have some edges which are coming in and some edges which are going out. 

So, we separate out the degree in to the indegree and the outdegree. So, the indegree is 

the number of edges pointing into v directed into v, the outdegree of v is a number of 

edges pointing out of v. 

(Refer Slide Time: 08:24) 

 

So, our first claim is that every DAG has at least one vertex with in degree 0, in terms of 

are example a vertex with in degree 0 is something which has no dependencies, nothing 

it does not depend on anything, this nothing pointing into it. Now, how do we proof this 

where supposing we start with any vertex v such that has in degree greater than 0, since 

it has in something pointing into it, then it must have some edge coming into it, so let us 

called at b 2. 

Now, supposing this does not having in degree 0, then it must also have something 

pointing it to. So, then I get a third vertex, so in this way if I keep finding that the 

vertices have encountering have in degree greater than 0, eventually I must enumerate all 

the vertices in my graph. Now, if there is still not a case that the nth vertex there are n 

vertices in the nth vertex still does not increase 0 then it must have an incoming edge, but 

they cannot be from a new vertex. So, it must point from one of the existing vertices 

which have already seen before. 
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So, therefore, if I have a continuous sequence or vertices all of which are pointing to 

each the previous one with in degree not equal to 0, then I will end up with a cycle, but 

this is the contradiction, because we have an acyclic graph. So, in any directed acyclic 

graph, they must be at least one vertex with in degree 0 which corresponds to a task with 

more dependencies from where we can start or a numeration of the tasks. 

(Refer Slide Time: 09:58) 

 

So, this is a more elaborate version of the algorithm that it described earlier. So, we pick 

a vertex with in degree 0, we call that such a vertex has no dependencies, now we 

enumerated because it now has it is available for enumeration and then we deleted from 

the graph. So, when we delete a vertex with in degree 0 from a graph is suppose when 

we have a DAG like this. So, supposing we pick this one and we deleted, then clearly 

what remains is the DAG. 

Because, it still directed and we have not introduced an cycle, so it is already acyclic and 

by deleting an edge we cannot introduce a cycle. So, clearly it is a DAG, so we can apply 

the same criterion, this new DAG must also have at least one degree with vertex with in 

degree 0. So, we can numerate that and keep going, so we keep enumerating vertices 

with in degree 0 and through the DAG becomes empty, each n vertex to enumerate we 

will delete from the DAG. 
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