
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 06

Lecture - 23

Directed Acyclic Graphs (DAGs)

We now turn our attention to a very interesting and important class of graphs called

Directed Acyclic Graphs or DAGs.

(Refer Slide Time: 00:08)

So, to motivate this class of graphs, let us look at a problem where we have a bunch of

task to perform with some constraints. Suppose, we are going on a foreign trip, then of

course, we need a passport, we need to buy a ticket, we require a visa probably, we want

to buy some travel insurance, we probably need some foreign exchange as well and

perhaps you want to buy some gifts for our hosts.

222

(Refer Slide Time: 00:36)

Now, these tasks are dependent on each other in certain ways, without a passport you

cannot buy a ticket, not even buy any travel insurance. For the visa, you need both the

ticket and the insurance to be available and without a visa, the bank will not give you

foreign exchange. And finally, you would not like to buy gifts for your hosts, unless the

trip is confirmed. So, unless you have all these things including the visa in hand, you do

not want to invest in the gift.

(Refer Slide Time: 01:06)

So, our goal is that given these constraints in what sequence should we perform these six

operations, getting a passport, buying a ticket, getting insurance, getting a visa, buying

foreign exchange and buying gifts for our hosts. What sequence should we do it, so that

223

whenever we want to approach a task, the constraints that are required for the task are

satisfied.

(Refer Slide Time: 01:31)

So, as you would expect we will model this using a graph. In this graph, the vertices will

be the tasks and then you will have an edge pointing from T 1 to T 2, if T 1 must come

before T 2, in other words T 2 depends on T 1 you cannot do T 2 unless T 1 has been

completed. So, as an example getting a passport must come before buying a ticket, so T 1

is getting a passport, T 2 could be getting a ticket. Similarly, you must buy a, have a visa

before you buy a foreign exchange. So, there will be an edge from getting a visa to buy a

foreign exchange.

(Refer Slide Time: 02:13)

224

So, if we look at the constraints that we wrote this is the graph that we had, so we had a

constraints with sets we need a passport to buy a ticket, we need a passport to buy

insurance, we need both a ticket and insurance to get a visa. So, there are two constraints

pointing to visa. Then, you need a visa to buy a foreign exchange and finally, you said

we will buy a gift only if the trip is confirmed and at some point at this stage when all

these operations are done, we can assume that the trip is confirmed, because nothing is

blocking as getting on the plane.

So, this is a graph that we have and now our goal is to sequence these six operations, in

such a way that whenever we want to perform a task, whatever it depends on has already

been done. So, we can see that you need a passport to do anything, so we always need to

start with getting a password. Now, there is no dependency between buying a ticket and

buying insurance as per become constraints we have, so far. So, after password you can

either buy a ticket first and then buy insurance or you can buy insurance first and then

buy a ticket.

So, there is a different ordering possible which does not violate the constraints, on the

other hand for a visa we need both. So, visa must come after both ticket and insurance,

but again having done the visa, then there is no constraint between buying the foreign

exchange and buying gifts. So, you could do the foreign exchange before the gift or the

gift before the foreign exchange, so there are in this particular example there are two

possible ways of reordering ticket and the insurance and there are two possible ways of

reordering the gifts and the foreign exchange. So, overall there are four different

sequences which are compatible with these constraints.

225

(Refer Slide Time: 03:51)

So, this class of graph is an important class and it has two important features, one is of

course, it is directed. Because, these dependencies are from one task to another task, it is

not a symmetric dependency and there are no cycles. See, if you had a cycle it would

been that group of tasks depend on each other, so there is no way to start, because each

task is depends on something else in the cycle. So, you have to break the cycle

somewhere in order to get started, but you cannot break it anywhere, because each task

depends on something else in the cycle. So, this graph will have directions on the edges

and they cannot be any cycles in this graph.

(Refer Slide Time: 04:28)

So, we call such a graph a directed acyclic graph, so a directed acyclic graph is just a

226

directed graph, in which there is no directed path from any vertex back to itself. So, if I

started any vertex V, it should not be the case that I can follow a sequence of directed

edges in the same direction and somehow come back to d. So, this should not be there, so

it should not be this cycle, we abbreviate the name Directed Acyclic Graph as DAG.. So,

very often simplicity we will call this graph as DAGs.

(Refer Slide Time: 05:02)

So, the problem that we had discussed in our example is that we have given a set of tasks

and we want to write them out in a sequence with respect to the constraints, the

constraints are nothing but, the edges. So, in general we are given a set of vertices these

are our tasks abstractly 1 to n and we want to read, write our 1 to n in such a way that the

constraints are respected. What this means is, that we will write out a sequence of

numbers which is a permutation of 1 to n. In such a way that whenever there is a

constraint of the form j k that is represents edge j k, then in the numeration that we have

perform j must come before k. So, it cannot be that we have to do j before k according to

our constraint, but in the sequence that we produced k happens before j. So, the order of

vertices in the final sequence must respect the constraints given by DAG, so for various

reasons this is known as topologically sorting the DAG.

227

(Refer Slide Time: 06:02)

So, the first observation is that if the directed graph had a cycle, then you will not be able

to topologically order it. Because, if it had a cycle then for instance supposing j and k are

vertices on the cycle, then you will have a path from j to k and a path from k to j. Now, it

is easy to see that the topological ordering constraint extend to paths that is if I have j

before k as an edge, I know that j must appear before k in the final sequence, also it has

the path from j to k, then there is a sequence of dependencies from j to k. So, j must

appear before k.

Now, if I have a cycle it says that j must come before k and k must come before j. So,

there is no way to break this ((Refer Time: 06:45)), so we will end up with this situation

where we cannot order this set of task to respect the constraints. So, the graph has cycles,

then it is clear that there is no topological ordering possible.

228

(Refer Slide Time: 06:58)

So, what we claim; however, is that for DAGs there is no cycle, the graph is actually

acyclic then we can always order it topologically. So, this strategy is to order the vertices

as follows, you first list all the vertices which have no dependencies. In our earlier

example, the vertex which has no dependencies was getting passport, we did not need to

do anything before getting a passport, so we can do that first.

Now, once we are nop-top that the dependency you see any vertex which all it is

dependencies that now satisfied and then we can numerate that. So, we can

systematically list out vertices with no incoming edges, then vertices all whose incoming

edges are already been accounted for a numeration and so on.

(Refer Slide Time: 07:45)

229

So, to formalize this notion we introduce some terminology, so recall that for an

undirected graph, we use the term degree of v to refer to the number of vertices

connected to v. So, v was connected by an edge before vertices, then we would said that

the degree of v is 4. Now, since we have a directed graph we have a directions on the

edges, we have some edges which are coming in and some edges which are going out.

So, we separate out the degree in to the indegree and the outdegree. So, the indegree is

the number of edges pointing into v directed into v, the outdegree of v is a number of

edges pointing out of v.

(Refer Slide Time: 08:24)

So, our first claim is that every DAG has at least one vertex with in degree 0, in terms of

are example a vertex with in degree 0 is something which has no dependencies, nothing

it does not depend on anything, this nothing pointing into it. Now, how do we proof this

where supposing we start with any vertex v such that has in degree greater than 0, since

it has in something pointing into it, then it must have some edge coming into it, so let us

called at b 2.

Now, supposing this does not having in degree 0, then it must also have something

pointing it to. So, then I get a third vertex, so in this way if I keep finding that the

vertices have encountering have in degree greater than 0, eventually I must enumerate all

the vertices in my graph. Now, if there is still not a case that the nth vertex there are n

vertices in the nth vertex still does not increase 0 then it must have an incoming edge, but

they cannot be from a new vertex. So, it must point from one of the existing vertices

which have already seen before.

230

So, therefore, if I have a continuous sequence or vertices all of which are pointing to

each the previous one with in degree not equal to 0, then I will end up with a cycle, but

this is the contradiction, because we have an acyclic graph. So, in any directed acyclic

graph, they must be at least one vertex with in degree 0 which corresponds to a task with

more dependencies from where we can start or a numeration of the tasks.

(Refer Slide Time: 09:58)

So, this is a more elaborate version of the algorithm that it described earlier. So, we pick

a vertex with in degree 0, we call that such a vertex has no dependencies, now we

enumerated because it now has it is available for enumeration and then we deleted from

the graph. So, when we delete a vertex with in degree 0 from a graph is suppose when

we have a DAG like this. So, supposing we pick this one and we deleted, then clearly

what remains is the DAG.

Because, it still directed and we have not introduced an cycle, so it is already acyclic and

by deleting an edge we cannot introduce a cycle. So, clearly it is a DAG, so we can apply

the same criterion, this new DAG must also have at least one degree with vertex with in

degree 0. So, we can numerate that and keep going, so we keep enumerating vertices

with in degree 0 and through the DAG becomes empty, each n vertex to enumerate we

will delete from the DAG.

231

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

